DEPARTMENT OF INDUSTRIAL ENGINEERING (ENGLISH)
Qualification Awarded Program Süresi Toplam Kredi (AKTS) Öğretim Şekli Yeterliliğin Düzeyi ve Öğrenme Alanı
Bachelor's (First Cycle) Degree 4 240 FULL TIME TYÇ, TR-NQF-HE, EQF-LLL, ISCED (2011):Level 6
QF-EHEA:First Cycle
TR-NQF-HE, ISCED (1997-2013): 44,52

Ders Genel Tanıtım Bilgileri

Course Code: 1411002032
Ders İsmi: Materials and Material Technologies in Industry
Ders Yarıyılı: Fall
Ders Kredileri:
Theoretical Practical Labs Credit ECTS
3 0 0 3 5
Language of instruction: EN
Ders Koşulu:
Ders İş Deneyimini Gerektiriyor mu?: No
Other Recommended Topics for the Course: None
Type of course: Department Elective
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi Elif TARAKÇI
Course Lecturer(s):
Course Assistants:

Dersin Amaç ve İçeriği

Course Objectives: The aim of this course is to provide students with basic knowledge on materials science, material properties, material characterization and material production methods.
Course Content: Within the scope of the course; Historical development of materials science, fundamentals of materials science, material classes, material production and characterization, current problems and future in materials science are covered.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
1) Learning the historical development of Materials Science
2) To have basic knowledge about current problems and issues related to Materials Science in Turkey and the world.
3) To have knowledge about the basic topics and concepts of Materials Science.
4) Having knowledge about material characterization and material production methods
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Ders Akış Planı

Week Subject Related Preparation
1) Historical development of Materials Science TEXT NOTES
2) Introduction to the fields and concepts of Materials Science, classification of materials TEXT NOTES
3) Metals TEXT NOTES
4) Metals TEXT NOTES
5) Ceramics TEXT NOTES
6) Ceramics TEXT NOTES
7) Polymers TEXT NOTES
8) MIDTERM
9) Polymers TEXT NOTES
10) Composite Materials TEXT NOTES
11) Composite Materials TEXT NOTES
12) Introduction to Production Methods TEXT NOTES
13) Fundamentals of Materials Characterization LECTURE NOTES
14) Current status and future opportunities in Materials Science TEXT NOTLARI
15) Current status and future opportunities in Materials Science TEXT NOTES
16) FINAL EXAM

Sources

Course Notes / Textbooks: Materials Science and Engineering: An Introduction 10E, William D. Callister Jr., David G. Rethwisch
References: Materials Science and Engineering: An Introduction 10E, William D. Callister Jr., David G. Rethwisch

Ders - Program Öğrenme Kazanım İlişkisi

Ders Öğrenme Kazanımları

1

2

3

4

Program Outcomes
1) Engineering Knowledge: Knowledge in mathematics, science, basic engineering, computer computing.
2) Engineering Knowledge: Knowledge in subjects specific to the discipline of industrial engineering.
3) Engineering Knowledge: Ability to use this knowledge in solving complex engineering problems.
4) Problem Analysis: Ability to define, formulate and analyze complex engineering problems using basic science, mathematics and engineering knowledge and considering the UN Sustainable Development Goals*
5) Engineering Design: Ability to design creative solutions to complex engineering problems.
6) Engineering Design: Ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions*.
7) Use of Techniques and Tools: Ability to select and use appropriate techniques, resources, and modern engineering and computing tools, including estimation and modeling, for the analysis and solution of complex engineering problems, while being aware of their limitations.
8) Research and Review: Ability to conduct literature research for the investigation of complex engineering problems.
9) Research and Review: Ability to design experiments for the investigation of complex engineering problems.
10) Research and Review: Ability to conduct experiments for the investigation of complex engineering problems.
11) Research and Investigation: Ability to collect data to investigate complex engineering problems.
12) Research and Review: Ability to analyze and interpret results for the investigation of complex engineering problems.
13) Research and Review: Ability to use research methods for the investigation of complex engineering problems.
14) Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability and the environment within the scope of the UN Sustainable
15) Global Impact of Engineering Practices: Awareness of the legal implications of engineering solutions.
16) Ethical Behavior: Acting in accordance with the principles of the engineering profession*, knowledge of ethical responsibility.
17) Ethical Behavior: Awareness of being impartial, non-discriminatory and inclusive of diversity.
18) Individual and Teamwork: Ability to work individually (face-to-face, remotely or mixed).
19) Individual and Teamwork: Ability to work effectively as a team member or leader in intra-disciplinary teams (face-to-face, remotely or mixed).
20) Individual and Teamwork: Ability to work effectively as a team member or leader in multi-disciplinary teams (face-to-face, remotely or mixed).
21) Oral and Written Communication: Ability to communicate effectively in technical matters, both verbally and in writing, taking into account the various differences of the target audience (such as education, language,profession).
22) Project Management: Knowledge of business practices such as project management and economic feasibility analysis.
23) Project Management: Awareness of entrepreneurship and innovation.
24) Lifelong Learning: Lifelong learning skills that include independent and continuous learning, adapting to new and developing technologies, and questioning thinking about technological changes.

Ders - Öğrenme Kazanımı İlişkisi

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Engineering Knowledge: Knowledge in mathematics, science, basic engineering, computer computing.
2) Engineering Knowledge: Knowledge in subjects specific to the discipline of industrial engineering.
3) Engineering Knowledge: Ability to use this knowledge in solving complex engineering problems.
4) Problem Analysis: Ability to define, formulate and analyze complex engineering problems using basic science, mathematics and engineering knowledge and considering the UN Sustainable Development Goals*
5) Engineering Design: Ability to design creative solutions to complex engineering problems.
6) Engineering Design: Ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions*.
7) Use of Techniques and Tools: Ability to select and use appropriate techniques, resources, and modern engineering and computing tools, including estimation and modeling, for the analysis and solution of complex engineering problems, while being aware of their limitations.
8) Research and Review: Ability to conduct literature research for the investigation of complex engineering problems.
9) Research and Review: Ability to design experiments for the investigation of complex engineering problems.
10) Research and Review: Ability to conduct experiments for the investigation of complex engineering problems.
11) Research and Investigation: Ability to collect data to investigate complex engineering problems.
12) Research and Review: Ability to analyze and interpret results for the investigation of complex engineering problems.
13) Research and Review: Ability to use research methods for the investigation of complex engineering problems.
14) Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability and the environment within the scope of the UN Sustainable
15) Global Impact of Engineering Practices: Awareness of the legal implications of engineering solutions.
16) Ethical Behavior: Acting in accordance with the principles of the engineering profession*, knowledge of ethical responsibility.
17) Ethical Behavior: Awareness of being impartial, non-discriminatory and inclusive of diversity.
18) Individual and Teamwork: Ability to work individually (face-to-face, remotely or mixed).
19) Individual and Teamwork: Ability to work effectively as a team member or leader in intra-disciplinary teams (face-to-face, remotely or mixed).
20) Individual and Teamwork: Ability to work effectively as a team member or leader in multi-disciplinary teams (face-to-face, remotely or mixed).
21) Oral and Written Communication: Ability to communicate effectively in technical matters, both verbally and in writing, taking into account the various differences of the target audience (such as education, language,profession).
22) Project Management: Knowledge of business practices such as project management and economic feasibility analysis.
23) Project Management: Awareness of entrepreneurship and innovation.
24) Lifelong Learning: Lifelong learning skills that include independent and continuous learning, adapting to new and developing technologies, and questioning thinking about technological changes.

Öğrenme Etkinliği ve Öğretme Yöntemleri

Ölçme ve Değerlendirme Yöntemleri ve Kriterleri

Yazılı Sınav (Açık uçlu sorular, çoktan seçmeli, doğru yanlış, eşleştirme, boşluk doldurma, sıralama)
Homework

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 1 % 30
Midterms 1 % 30
Semester Final Exam 1 % 40
total % 100
PERCENTAGE OF SEMESTER WORK % 60
PERCENTAGE OF FINAL WORK % 40
total % 100

İş Yükü ve AKTS Kredisi Hesaplaması

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 7 98
Homework Assignments 1 2 2
Midterms 1 2 2
Final 1 2 2
Total Workload 146