DEPARTMENT OF INDUSTRIAL ENGINEERING (ENGLISH) | |||||
---|---|---|---|---|---|
Qualification Awarded | Program Süresi | Toplam Kredi (AKTS) | Öğretim Şekli | Yeterliliğin Düzeyi ve Öğrenme Alanı | |
Bachelor's (First Cycle) Degree | 4 | 240 | FULL TIME |
TYÇ, TR-NQF-HE, EQF-LLL, ISCED (2011):Level 6 QF-EHEA:First Cycle TR-NQF-HE, ISCED (1997-2013): 44,52 |
Course Code: | 5010003093 | ||||||||||
Ders İsmi: | Introduction to Economics | ||||||||||
Ders Yarıyılı: | Spring | ||||||||||
Ders Kredileri: |
|
||||||||||
Language of instruction: | EN | ||||||||||
Ders Koşulu: | |||||||||||
Ders İş Deneyimini Gerektiriyor mu?: | No | ||||||||||
Other Recommended Topics for the Course: | |||||||||||
Type of course: | Üniversite Seçmeli | ||||||||||
Course Level: |
|
||||||||||
Mode of Delivery: | Face to face | ||||||||||
Course Coordinator : | Öğr.Gör. Erkan KOLAT | ||||||||||
Course Lecturer(s): |
|
||||||||||
Course Assistants: |
Course Objectives: | The course covers the fundamentals of economic theory. These issues: the behavior of individuals economic theory, firm and economic organization theory, how general equilibrium is formed in perfect competition, monopoly and oligopoly market structure and capital theory. is the basic understanding. |
Course Content: | It is an introductory undergraduate course that teaches the fundamentals of economics. This course introduces microeconomic concepts and analysis, supply and demand analysis, theories of firm and individual behavior, competition and monopoly, and welfare economics. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Introduction to economics | |
2) | market mechanism | |
3) | demand, supply, and market equilibrium | |
4) | elasticity | |
5) | price control | |
6) | consumer behavior | |
7) | the market system choices made by households and firms | |
8) | midterm | |
9) | the production process: the behavior of profit maximizing firms | |
10) | short-run costs and output decisions | |
11) | long-run costs and output decisions | |
12) | introduction to macroeconomics | |
13) | The development of macroeconomic thinking: historical perspective | |
14) | economic growth | |
15) | aggregate supply, inflation, and unemployment | |
16) | final-exam |
Course Notes / Textbooks: | lecture notes. |
References: | lecture notes. |
Ders Öğrenme Kazanımları | 1 |
2 |
|||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | |||||||||||||||||||||||
1) Engineering Knowledge: Knowledge in mathematics, science, basic engineering, computer computing. | |||||||||||||||||||||||
2) Engineering Knowledge: Knowledge in subjects specific to the discipline of industrial engineering. | |||||||||||||||||||||||
3) Engineering Knowledge: Ability to use this knowledge in solving complex engineering problems. | |||||||||||||||||||||||
4) Problem Analysis: Ability to define, formulate and analyze complex engineering problems using basic science, mathematics and engineering knowledge and considering the UN Sustainable Development Goals* | |||||||||||||||||||||||
5) Engineering Design: Ability to design creative solutions to complex engineering problems. | |||||||||||||||||||||||
6) Engineering Design: Ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions*. | |||||||||||||||||||||||
7) Use of Techniques and Tools: Ability to select and use appropriate techniques, resources, and modern engineering and computing tools, including estimation and modeling, for the analysis and solution of complex engineering problems, while being aware of their limitations. | |||||||||||||||||||||||
8) Research and Review: Ability to conduct literature research for the investigation of complex engineering problems. | |||||||||||||||||||||||
9) Research and Review: Ability to design experiments for the investigation of complex engineering problems. | |||||||||||||||||||||||
10) Research and Review: Ability to conduct experiments for the investigation of complex engineering problems. | |||||||||||||||||||||||
11) Research and Investigation: Ability to collect data to investigate complex engineering problems. | |||||||||||||||||||||||
12) Research and Review: Ability to analyze and interpret results for the investigation of complex engineering problems. | |||||||||||||||||||||||
13) Research and Review: Ability to use research methods for the investigation of complex engineering problems. | |||||||||||||||||||||||
14) Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability and the environment within the scope of the UN Sustainable | |||||||||||||||||||||||
15) Global Impact of Engineering Practices: Awareness of the legal implications of engineering solutions. | |||||||||||||||||||||||
16) Ethical Behavior: Acting in accordance with the principles of the engineering profession*, knowledge of ethical responsibility. | |||||||||||||||||||||||
17) Ethical Behavior: Awareness of being impartial, non-discriminatory and inclusive of diversity. | |||||||||||||||||||||||
18) Individual and Teamwork: Ability to work individually (face-to-face, remotely or mixed). | |||||||||||||||||||||||
19) Individual and Teamwork: Ability to work effectively as a team member or leader in intra-disciplinary teams (face-to-face, remotely or mixed). | |||||||||||||||||||||||
20) Individual and Teamwork: Ability to work effectively as a team member or leader in multi-disciplinary teams (face-to-face, remotely or mixed). | |||||||||||||||||||||||
21) Oral and Written Communication: Ability to communicate effectively in technical matters, both verbally and in writing, taking into account the various differences of the target audience (such as education, language,profession). | |||||||||||||||||||||||
22) Project Management: Knowledge of business practices such as project management and economic feasibility analysis. | |||||||||||||||||||||||
23) Project Management: Awareness of entrepreneurship and innovation. | |||||||||||||||||||||||
24) Lifelong Learning: Lifelong learning skills that include independent and continuous learning, adapting to new and developing technologies, and questioning thinking about technological changes. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Engineering Knowledge: Knowledge in mathematics, science, basic engineering, computer computing. | |
2) | Engineering Knowledge: Knowledge in subjects specific to the discipline of industrial engineering. | |
3) | Engineering Knowledge: Ability to use this knowledge in solving complex engineering problems. | |
4) | Problem Analysis: Ability to define, formulate and analyze complex engineering problems using basic science, mathematics and engineering knowledge and considering the UN Sustainable Development Goals* | |
5) | Engineering Design: Ability to design creative solutions to complex engineering problems. | |
6) | Engineering Design: Ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions*. | |
7) | Use of Techniques and Tools: Ability to select and use appropriate techniques, resources, and modern engineering and computing tools, including estimation and modeling, for the analysis and solution of complex engineering problems, while being aware of their limitations. | |
8) | Research and Review: Ability to conduct literature research for the investigation of complex engineering problems. | |
9) | Research and Review: Ability to design experiments for the investigation of complex engineering problems. | |
10) | Research and Review: Ability to conduct experiments for the investigation of complex engineering problems. | |
11) | Research and Investigation: Ability to collect data to investigate complex engineering problems. | |
12) | Research and Review: Ability to analyze and interpret results for the investigation of complex engineering problems. | |
13) | Research and Review: Ability to use research methods for the investigation of complex engineering problems. | |
14) | Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability and the environment within the scope of the UN Sustainable | |
15) | Global Impact of Engineering Practices: Awareness of the legal implications of engineering solutions. | |
16) | Ethical Behavior: Acting in accordance with the principles of the engineering profession*, knowledge of ethical responsibility. | |
17) | Ethical Behavior: Awareness of being impartial, non-discriminatory and inclusive of diversity. | |
18) | Individual and Teamwork: Ability to work individually (face-to-face, remotely or mixed). | |
19) | Individual and Teamwork: Ability to work effectively as a team member or leader in intra-disciplinary teams (face-to-face, remotely or mixed). | |
20) | Individual and Teamwork: Ability to work effectively as a team member or leader in multi-disciplinary teams (face-to-face, remotely or mixed). | |
21) | Oral and Written Communication: Ability to communicate effectively in technical matters, both verbally and in writing, taking into account the various differences of the target audience (such as education, language,profession). | |
22) | Project Management: Knowledge of business practices such as project management and economic feasibility analysis. | |
23) | Project Management: Awareness of entrepreneurship and innovation. | |
24) | Lifelong Learning: Lifelong learning skills that include independent and continuous learning, adapting to new and developing technologies, and questioning thinking about technological changes. |
Course | |
Problem Çözme | |
Seminar | |
Soru cevap/ Tartışma |
Yazılı Sınav (Açık uçlu sorular, çoktan seçmeli, doğru yanlış, eşleştirme, boşluk doldurma, sıralama) |
Semester Requirements | Number of Activities | Level of Contribution |
total | % | |
PERCENTAGE OF SEMESTER WORK | % 0 | |
PERCENTAGE OF FINAL WORK | % | |
total | % |