DEPARTMENT OF INDUSTRIAL ENGINEERING (ENGLISH) | |||||
---|---|---|---|---|---|
Qualification Awarded | Program Süresi | Toplam Kredi (AKTS) | Öğretim Şekli | Yeterliliğin Düzeyi ve Öğrenme Alanı | |
Bachelor's (First Cycle) Degree | 4 | 240 | FULL TIME |
TYÇ, TR-NQF-HE, EQF-LLL, ISCED (2011):Level 6 QF-EHEA:First Cycle TR-NQF-HE, ISCED (1997-2013): 44,52 |
Course Code: | 1411411009 | ||||||||||
Ders İsmi: | Graduation Project I | ||||||||||
Ders Yarıyılı: | Fall | ||||||||||
Ders Kredileri: |
|
||||||||||
Language of instruction: | EN | ||||||||||
Ders Koşulu: | |||||||||||
Ders İş Deneyimini Gerektiriyor mu?: | No | ||||||||||
Other Recommended Topics for the Course: | |||||||||||
Type of course: | Necessary | ||||||||||
Course Level: |
|
||||||||||
Mode of Delivery: | Face to face | ||||||||||
Course Coordinator : | Dr.Öğr.Üyesi Elif TARAKÇI | ||||||||||
Course Lecturer(s): |
|
||||||||||
Course Assistants: |
Course Objectives: | The aim of this course, is to enable students to competently use the processes and techniques necessary for research, interpretation and application by using the knowledge and skills acquired in undergraduate education on a theoretical or practical engineering problem. |
Course Content: | This course involves applying engineering principles to solve real-world problems in areas like optimization, supply chain management, and production systems. Students focus on project planning, analysis, and implementing solutions, concluding with a final report and presentation. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Pre-Decision on the Topic of the Graduation Project | All academic sources on the relevant field. |
2) | Literature Review | All academic sources on the relevant field. |
3) | Deciding on the Topic of the Graduation Project with Details | All academic sources on the relevant field. |
4) | Literature Review | All academic sources on the relevant field. |
5) | Literature Review | All academic sources on the relevant field. |
6) | Defining the Main Outlines of the Research to be Conducted in the Specified Area | All academic sources on the relevant field. |
7) | Defining the Main Outlines of the Research to be Conducted in the Specified Area | All academic sources on the relevant topic. |
8) | Literature Review for Similar Cases | All academic sources on the relevant topic. |
9) | Modelling of the Problem | All academic sources on the relevant field. |
10) | Modelling the Problem | All academic sources on the relevant field. |
11) | Solution Gathering | All academic sources related to the relevant field, the data used in the model, and the outputs. |
12) | Solution Gathering | All academic sources related to the relevant field, the data used in the model, and the outputs. |
13) | Discussion of the Solution(s) and Reporting | All academic sources related to the relevant field, the data used in the model, and the outputs. |
14) | Final Report Submission | Hazırlanan Rapor ve Sunum |
Course Notes / Textbooks: | Proje konusuna göre öğretim üyelerinin tavsiye ettiği tüm kaynaklar/All resources recommended by faculty members according to the project topic |
References: | Proje konusuna göre öğretim üyelerinin tavsiye ettiği tüm kaynaklar/All resources recommended by faculty members according to the project topic |
Ders Öğrenme Kazanımları | 1 |
2 |
3 |
4 |
|||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | |||||||||||||||||||||||
1) Engineering Knowledge: Knowledge in mathematics, science, basic engineering, computer computing. | |||||||||||||||||||||||
2) Engineering Knowledge: Knowledge in subjects specific to the discipline of industrial engineering. | |||||||||||||||||||||||
3) Engineering Knowledge: Ability to use this knowledge in solving complex engineering problems. | |||||||||||||||||||||||
4) Problem Analysis: Ability to define, formulate and analyze complex engineering problems using basic science, mathematics and engineering knowledge and considering the UN Sustainable Development Goals* | |||||||||||||||||||||||
5) Engineering Design: Ability to design creative solutions to complex engineering problems. | |||||||||||||||||||||||
6) Engineering Design: Ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions*. | |||||||||||||||||||||||
7) Use of Techniques and Tools: Ability to select and use appropriate techniques, resources, and modern engineering and computing tools, including estimation and modeling, for the analysis and solution of complex engineering problems, while being aware of their limitations. | |||||||||||||||||||||||
8) Research and Review: Ability to conduct literature research for the investigation of complex engineering problems. | |||||||||||||||||||||||
9) Research and Review: Ability to design experiments for the investigation of complex engineering problems. | |||||||||||||||||||||||
10) Research and Review: Ability to conduct experiments for the investigation of complex engineering problems. | |||||||||||||||||||||||
11) Research and Investigation: Ability to collect data to investigate complex engineering problems. | |||||||||||||||||||||||
12) Research and Review: Ability to analyze and interpret results for the investigation of complex engineering problems. | |||||||||||||||||||||||
13) Research and Review: Ability to use research methods for the investigation of complex engineering problems. | |||||||||||||||||||||||
14) Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability and the environment within the scope of the UN Sustainable | |||||||||||||||||||||||
15) Global Impact of Engineering Practices: Awareness of the legal implications of engineering solutions. | |||||||||||||||||||||||
16) Ethical Behavior: Acting in accordance with the principles of the engineering profession*, knowledge of ethical responsibility. | |||||||||||||||||||||||
17) Ethical Behavior: Awareness of being impartial, non-discriminatory and inclusive of diversity. | |||||||||||||||||||||||
18) Individual and Teamwork: Ability to work individually (face-to-face, remotely or mixed). | |||||||||||||||||||||||
19) Individual and Teamwork: Ability to work effectively as a team member or leader in intra-disciplinary teams (face-to-face, remotely or mixed). | |||||||||||||||||||||||
20) Individual and Teamwork: Ability to work effectively as a team member or leader in multi-disciplinary teams (face-to-face, remotely or mixed). | |||||||||||||||||||||||
21) Oral and Written Communication: Ability to communicate effectively in technical matters, both verbally and in writing, taking into account the various differences of the target audience (such as education, language,profession). | |||||||||||||||||||||||
22) Project Management: Knowledge of business practices such as project management and economic feasibility analysis. | |||||||||||||||||||||||
23) Project Management: Awareness of entrepreneurship and innovation. | |||||||||||||||||||||||
24) Lifelong Learning: Lifelong learning skills that include independent and continuous learning, adapting to new and developing technologies, and questioning thinking about technological changes. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Engineering Knowledge: Knowledge in mathematics, science, basic engineering, computer computing. | |
2) | Engineering Knowledge: Knowledge in subjects specific to the discipline of industrial engineering. | |
3) | Engineering Knowledge: Ability to use this knowledge in solving complex engineering problems. | |
4) | Problem Analysis: Ability to define, formulate and analyze complex engineering problems using basic science, mathematics and engineering knowledge and considering the UN Sustainable Development Goals* | |
5) | Engineering Design: Ability to design creative solutions to complex engineering problems. | |
6) | Engineering Design: Ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions*. | |
7) | Use of Techniques and Tools: Ability to select and use appropriate techniques, resources, and modern engineering and computing tools, including estimation and modeling, for the analysis and solution of complex engineering problems, while being aware of their limitations. | |
8) | Research and Review: Ability to conduct literature research for the investigation of complex engineering problems. | |
9) | Research and Review: Ability to design experiments for the investigation of complex engineering problems. | |
10) | Research and Review: Ability to conduct experiments for the investigation of complex engineering problems. | |
11) | Research and Investigation: Ability to collect data to investigate complex engineering problems. | |
12) | Research and Review: Ability to analyze and interpret results for the investigation of complex engineering problems. | |
13) | Research and Review: Ability to use research methods for the investigation of complex engineering problems. | |
14) | Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability and the environment within the scope of the UN Sustainable | |
15) | Global Impact of Engineering Practices: Awareness of the legal implications of engineering solutions. | |
16) | Ethical Behavior: Acting in accordance with the principles of the engineering profession*, knowledge of ethical responsibility. | |
17) | Ethical Behavior: Awareness of being impartial, non-discriminatory and inclusive of diversity. | |
18) | Individual and Teamwork: Ability to work individually (face-to-face, remotely or mixed). | |
19) | Individual and Teamwork: Ability to work effectively as a team member or leader in intra-disciplinary teams (face-to-face, remotely or mixed). | |
20) | Individual and Teamwork: Ability to work effectively as a team member or leader in multi-disciplinary teams (face-to-face, remotely or mixed). | |
21) | Oral and Written Communication: Ability to communicate effectively in technical matters, both verbally and in writing, taking into account the various differences of the target audience (such as education, language,profession). | |
22) | Project Management: Knowledge of business practices such as project management and economic feasibility analysis. | |
23) | Project Management: Awareness of entrepreneurship and innovation. | |
24) | Lifelong Learning: Lifelong learning skills that include independent and continuous learning, adapting to new and developing technologies, and questioning thinking about technological changes. |
Tez Hazırlama |
Sunum | |
Raporlama | |
Tez Sunma |
Semester Requirements | Number of Activities | Level of Contribution |
Special Course Internship (Work Placement) | 1 | % 60 |
Semester Final Exam | 1 | % 40 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 60 | |
PERCENTAGE OF FINAL WORK | % 40 | |
total | % 100 |
Activities | Number of Activities | Duration (Hours) | Workload |
Study Hours Out of Class | 14 | 16 | 224 |
Presentations / Seminar | 1 | 2 | 2 |
Total Workload | 226 |