COMPUTER ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Ders Genel Tanıtım Bilgileri

Course Code: 1410002037
Ders İsmi: Power Electronics Applications in Engineering
Ders Yarıyılı: Fall
Ders Kredileri:
Theoretical Practical Credit ECTS
3 0 3 5
Language of instruction: TR
Ders Koşulu:
Ders İş Deneyimini Gerektiriyor mu?: No
Type of course: Bölüm Seçmeli
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery:
Course Coordinator : Dr.Öğr.Üyesi Cenk DİNÇBAKIR
Course Lecturer(s): Dr.Öğr.Üyesi Cenk DİNÇBAKIR
Course Assistants:

Dersin Amaç ve İçeriği

Course Objectives: To learn the basic electronic components of power electronics, to have knowledge about basic topologies, to design non-isolated switching power converters and to perform computer simulations.
Course Content: 1. Learning Basic Concepts of Power Electronics
2. Analyzing and Designing Linear and Switching Power Converters
3. Have Knowledge About Switching Techniques
4. Learning the Circuit Elements Used in Power Electronics
5. Simulating Power Converters in Computer Environment.
6. Having Basic Knowledge of PCB Drawing

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Ders Akış Planı

Week Subject Related Preparation
1) Introduction – Power Electronics Preparation Questions – Grounding and Safety
2) Linear Power Supplies – Rectifier Circuits
3) Linear Power Supplies – Regulators
4) Linear Power Supply Design – PCB Drawing Examples
5) Power Electronics Basic Rules – Electronic Switch Circuit Elements
6) Switching Technique in Power Electronics
7) High and Low Side Switching Technique – Half Bridge – Full Bridge
8) Midterm Week
9) Non-Isolated Converters Basic Concepts
10) Buck Converter Analysis and Design
11) Boost Converter Analysis and Design
12) Buck-Boost Converter Analysis and Design
13) Isolated Converters – Flyback Converter
14) Power Converter Design CAD Programs
15) Power Electronics Field Applications

Sources

Course Notes / Textbooks: Ders Notları / Lecture Notes
References: 1. Pressman A. I., Billings K., Morey T., Switching Power Supply Design, McGraw-Hill, ISBN 978-0-07-148272-1
2. POWER ELECTRONICS HANDBOOK, Muhammad H. RASHID, Butterworth-Heinemann, 2017

Ders - Program Öğrenme Kazanım İlişkisi

Ders Öğrenme Kazanımları
Program Outcomes
1) PO 1.1) Sufficient knowledge in mathematics, science and computer engineering
2) PO 1.2) Ability to apply theoretical and applied knowledge in mathematics, science and computer engineering for modeling and solving engineering problems.
3) PO 2.1) Identifying complex engineering problems
4) PO 2.2) Defining complex engineering problems
5) PO 2.3) Formulating complex engineering problems
6) PO 2.4) Ability to solve complex engineering problems
7) PO 2.5) Ability to choose and apply appropriate analysis and modeling methods
8) PO 3.1) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions.
9) PO 3.2) Ability to apply modern design methods under realistic constraints and conditions for a complex system, process, device or product
10) PO 4.1) Developing modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications
11) PO 4.2) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications
12) PO 4.3) Ability to use information technologies effectively.
13) PO 5.1) Examination of complex engineering problems or discipline-specific research topics, designing experiments
14) PO 5.2) Examination of complex engineering problems or discipline-specific research topics, experimentation
15) PO 5.3 ) Analysis of complex engineering problems or discipline-specific research topics, data collection
16) PO 5.4) Analyzing the results of complex engineering problems or discipline-specific research topics
17) PO 5.5) Examining and interpreting complex engineering problems or discipline-specific research topics

Ders - Öğrenme Kazanımı İlişkisi

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) PO 1.1) Sufficient knowledge in mathematics, science and computer engineering
2) PO 1.2) Ability to apply theoretical and applied knowledge in mathematics, science and computer engineering for modeling and solving engineering problems.
3) PO 2.1) Identifying complex engineering problems
4) PO 2.2) Defining complex engineering problems
5) PO 2.3) Formulating complex engineering problems
6) PO 2.4) Ability to solve complex engineering problems
7) PO 2.5) Ability to choose and apply appropriate analysis and modeling methods
8) PO 3.1) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions. 5
9) PO 3.2) Ability to apply modern design methods under realistic constraints and conditions for a complex system, process, device or product
10) PO 4.1) Developing modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications
11) PO 4.2) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications
12) PO 4.3) Ability to use information technologies effectively.
13) PO 5.1) Examination of complex engineering problems or discipline-specific research topics, designing experiments
14) PO 5.2) Examination of complex engineering problems or discipline-specific research topics, experimentation
15) PO 5.3 ) Analysis of complex engineering problems or discipline-specific research topics, data collection
16) PO 5.4) Analyzing the results of complex engineering problems or discipline-specific research topics
17) PO 5.5) Examining and interpreting complex engineering problems or discipline-specific research topics

Öğrenme Etkinliği ve Öğretme Yöntemleri

Ölçme ve Değerlendirme Yöntemleri ve Kriterleri

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
total %
PERCENTAGE OF SEMESTER WORK % 0
PERCENTAGE OF FINAL WORK %
total %