YAZILIM MÜHENDİSLİĞİ (İNGİLİZCE)
Kazanılan Yeterlilik Program Süresi Toplam Kredi (AKTS) Öğretim Şekli Yeterliliğin Düzeyi ve Öğrenme Alanı
LİSANS DERECESİ 4 240 ÖRGÜN TYÇ, TYYÇ, EQF-LLL, ISCED (2011):6. Düzey
QF-EHEA:1. Düzey
TYYÇ, ISCED (1997-2013): 48,52

Ders Genel Tanıtım Bilgileri

Ders Kodu: 1413002005
Ders İsmi: Image Processing
Ders Yarıyılı: Bahar
Ders Kredileri:
Teorik Pratik Laboratuvar Kredi AKTS
3 0 0 3 5
Öğretim Dili: EN
Ders Koşulu:
Ders İş Deneyimini Gerektiriyor mu?: Hayır
Ders İçin Önerilen Diğer Hususlar:
Dersin Türü: Department Elective
Dersin Seviyesi:
Lisans TYYÇ:6. Düzey QF-EHEA:1. Düzey EQF-LLL:6. Düzey
Dersin Veriliş Şekli: Yüz yüze
Dersin Koordinatörü: Dr.Öğr.Üyesi Adem ÖZYAVAŞ
Dersi Veren(ler):
Dersin Yardımcıları:

Dersin Amaç ve İçeriği

Dersin Amacı: Bu ders kapsamında temel olarak biyomedikal veriler üzerinde ileri sayısal işaret, görüntü işleme, örüntü tanıma ve makine öğrenmesi yöntemlerinin öğretilmesi amaçlanmaktadır. Dersin temel amacı öğrencilerin bu alandaki matematiksel, bilimsel ve hesapsal analiz yeteneklerinin arttırılmasıdır. Bu bağlamda ders içeriğinde biyomedikal verilerin elde edilmesi, özelliklerinin değerlendirilmesi, ön işleme adımlarının neden ve uygulamalarının öğretilmesi (gürültü giderimi, filtreleme, pekiştirme, boyut indirgeme vb…), özellik çıkarımı, modelleme, eğiticisiz ve eğiticili öğrenme konularının yansıra yarı-eğiticili, topluluk ve derin öğrenme konularına da değinilecektir. Ayrıca öğrencilerin hesapsal yeteneklerinin arttırılması için temel biyomedikal uygulamalar üzerinde Matlab ve Python tabanlı bireysel/grup projeleri yürütülecektir.
Dersin İçeriği: Biyomedikal işaret ve görüntülerin özellikleri; İşaret ve görüntü işlemede kullanılan dönüşüm yöntemleri; İşaret ve görüntülerde gürültü giderimi; İşaret ve görüntü filtreleme yöntemleri; İşaret ve görüntü filtreleme yöntemleri; Doğrusal ve doğrusal olmayan boyut indirgeme yöntemleri; İstatistiksel, şekilbilimsel ve uzamsal öznitelik çıkarım yöntemleri; İşaret ve görüntü işlemede eğiticili öğrenme yöntemleri; İşaret ve görüntü işlemede eğiticisiz öğrenme yöntemleri; Yarı-eğiticili, topluluk ve derin öğrenme yöntemleri.

Öğrenme Kazanımları

Bu dersi başarıyla tamamlayabilen öğrenciler;
Öğrenme Kazanımları
1 - Bilgi
Kuramsal - Olgusal
1) Öğrencilere işaret ve görüntülerin orijini ve doğası hakkında teorik altyapı verilmiş olacaktır
2 - Beceriler
Bilişsel - Uygulamalı
1) Bilgisayar mühendisliği öğrencilerine, özellikle gelişen bu disiplinler arası alanda güçlü matematiksel ve algoritmik bilgiler kazandırılacaktır.
3 - Yetkinlikler
İletişim ve Sosyal Yetkinlik
Öğrenme Yetkinliği
1) Öğrencilere işaret ve görüntü işleme konularının yanı sıra örüntü tanıma ve makine öğrenmesi gibi konularda da öğrencilerin hesapsal ve bilimsel yetenekleri arttırılmaya çalışılacaktır.
Alana Özgü Yetkinlik
Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği

Ders Akış Planı

Hafta Konu Ön Hazırlık
1) Biyomedikal işaret ve görüntülerin elde edilmesi ve karakteristikleri Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
2) İşaretlerin istatistiksel karakteristiklerinin analizi (Momentler, güç, enformasyon, ilinti...) Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
3) Sayısal işaret işleme temelleri, örnekleme, nicemleme Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
4) Frekans analizi, Dönüşüm yöntemleri I: DFT, DCT, STFT Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
5) Dönüşüm yöntemleri II: Dalgacık dönüşümü
6) Görüntü işleme temelleri Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
7) Görüntü işlemede gürültü giderimi Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
8) Ara Sınav Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
9) Filtreleme ve pekiştirme yöntemleri Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
10) İşaret ve görüntülerin eğiticili öğrenme yöntemleriyle analizi Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
11) Boyut azaltma ve doğrusal/doğrusal olmayan dönüşüm yöntemleri Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
12) Biyomedikal işaret ve görüntüler için örüntü tanıma ve makine öğrenmesinin temelleri Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
13) İşaret ve görüntülerin eğiticisiz öğrenme yöntemleriyle analizi Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
14) İşaret ve görüntülerin eğiticili öğrenme yöntemleriyle analizi Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
15) İşaret ve görüntülerin yarı-eğiticili, topluluk ve derin öğrenme yöntemleriyle analizi Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.
16) Final Sınavı Robotics, mechatronics, and artificial intelligence, Newton C. Braga, Elsevier, 2002.

Kaynaklar

Ders Notları / Kitaplar: Okutman Notları
Diğer Kaynaklar: Lecture Notes

Ders - Program Öğrenme Kazanım İlişkisi

Ders Öğrenme Kazanımları

1

2

3

Program Kazanımları
1) Matematik, fen bilimleri, temel mühendislik, bilgisayarla hesaplamavla ilgili mühendislik disiplinine özgü konularda bilgi; bu bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi
2) Yazılım mühendisliği ile ilgili konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, algoritmik ve yazılımsal problemlerinin çözümünde kullanabilme becerisi.
3) Karmaşık mühendislik problemlerini, temel bilim, matematik ve mühendislik bilgilerini kullanarak ve ele alınan problemle ilgili BM Sürdürülebilir Kalkınma Amaçlarını gözeterek tanımlama, formüle etme ve analiz becerisi
4) Karmaşık mühendislik problemlerine yaratıcı çözümler tasarlama becerisi; karmaşık sistemleri, süreçleri, cihazları veya ürünleri gerçekçi kısıtları ve koşulları gözeterek, mevcut ve gelecekteki gereksinimleri karşılayacak biçimde tasarlama becerisi.
5) Karmaşık mühendislik problemlerinin analizi ve çözümüne yönelik, tahmin ve modelleme de dahil olmak üzere, uygun teknikleri, kaynakları ve modern mühendislik ve bilişim araçlarını, sınırlamalarının da farkında olarak seçme ve kullanma becerisi.
6) Karmaşık mühendislik problemlerinin incelenmesi için literatür araştırması, deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama dahil, araştırma yöntemlerini kullanma becerisi.
7) Mühendislik uygulamalarının BM Sürdürülebilir Kalkınma Amaçları kapsamında, topluma, sağlık ve güvenliğe, ekonomiye, sürdürülebilirlik ve çevreye etkileri hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık
8) Mühendislik meslek ilkelerine uygun davranma, etik sorumluluk hakkında bilgi; hiçbir konuda ayrımcılık yapmadan, tarafsız davranma ve çeşitliliği kapsayıcı olma konularında farkındalık.
9) Disiplin içi ve çok disiplinli takımlarda (yüz yüze, uzaktan veya karma) takım üyesi veya lideri olarak etkin biçimde çalışabilme becerisi
10) Bireysel çalışma becerisi.
11) Hedef kitlenin çeşitli farklılıklarını (eğitim, dil, meslek gibi) dikkate alarak, teknik konularda sözlü, yazılı etkin iletişim kurma becerisi.
12) Proje yönetimi ve ekonomik yapılabilirlik analizi gibi iş hayatındaki uygulamalar hakkında bilgi
13) Girişimcilik ve yenilikçilik hakkında farkındalık.
14) Bağımsız ve sürekli öğrenebilme, yeni ve gelişmekte olan teknolojilere uyum sağlayabilme ve teknolojik değişimlerle ilgili sorgulayıcı düşünebilmeyi kapsayan yaşam boyu öğrenme becerisi.

Ders - Öğrenme Kazanımı İlişkisi

Etkisi Yok 1 En Düşük 2 Düşük 3 Orta 4 Yüksek 5 En Yüksek
           
Dersin Program Kazanımlarına Etkisi Katkı Payı
1) Matematik, fen bilimleri, temel mühendislik, bilgisayarla hesaplamavla ilgili mühendislik disiplinine özgü konularda bilgi; bu bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi
2) Yazılım mühendisliği ile ilgili konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, algoritmik ve yazılımsal problemlerinin çözümünde kullanabilme becerisi.
3) Karmaşık mühendislik problemlerini, temel bilim, matematik ve mühendislik bilgilerini kullanarak ve ele alınan problemle ilgili BM Sürdürülebilir Kalkınma Amaçlarını gözeterek tanımlama, formüle etme ve analiz becerisi
4) Karmaşık mühendislik problemlerine yaratıcı çözümler tasarlama becerisi; karmaşık sistemleri, süreçleri, cihazları veya ürünleri gerçekçi kısıtları ve koşulları gözeterek, mevcut ve gelecekteki gereksinimleri karşılayacak biçimde tasarlama becerisi.
5) Karmaşık mühendislik problemlerinin analizi ve çözümüne yönelik, tahmin ve modelleme de dahil olmak üzere, uygun teknikleri, kaynakları ve modern mühendislik ve bilişim araçlarını, sınırlamalarının da farkında olarak seçme ve kullanma becerisi.
6) Karmaşık mühendislik problemlerinin incelenmesi için literatür araştırması, deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama dahil, araştırma yöntemlerini kullanma becerisi.
7) Mühendislik uygulamalarının BM Sürdürülebilir Kalkınma Amaçları kapsamında, topluma, sağlık ve güvenliğe, ekonomiye, sürdürülebilirlik ve çevreye etkileri hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık
8) Mühendislik meslek ilkelerine uygun davranma, etik sorumluluk hakkında bilgi; hiçbir konuda ayrımcılık yapmadan, tarafsız davranma ve çeşitliliği kapsayıcı olma konularında farkındalık.
9) Disiplin içi ve çok disiplinli takımlarda (yüz yüze, uzaktan veya karma) takım üyesi veya lideri olarak etkin biçimde çalışabilme becerisi
10) Bireysel çalışma becerisi.
11) Hedef kitlenin çeşitli farklılıklarını (eğitim, dil, meslek gibi) dikkate alarak, teknik konularda sözlü, yazılı etkin iletişim kurma becerisi.
12) Proje yönetimi ve ekonomik yapılabilirlik analizi gibi iş hayatındaki uygulamalar hakkında bilgi
13) Girişimcilik ve yenilikçilik hakkında farkındalık.
14) Bağımsız ve sürekli öğrenebilme, yeni ve gelişmekte olan teknolojilere uyum sağlayabilme ve teknolojik değişimlerle ilgili sorgulayıcı düşünebilmeyi kapsayan yaşam boyu öğrenme becerisi.

Öğrenme Etkinliği ve Öğretme Yöntemleri

Bireysel çalışma ve ödevi
Ders
Ödev

Ölçme ve Değerlendirme Yöntemleri ve Kriterleri

Yazılı Sınav (Açık uçlu sorular, çoktan seçmeli, doğru yanlış, eşleştirme, boşluk doldurma, sıralama)
Ödev

Ölçme ve Değerlendirme

Yarıyıl İçi Çalışmaları Aktivite Sayısı Katkı Payı
Devam 10 % 10
Projeler 1 % 20
Ara Sınavlar 1 % 30
Yarıyıl/Yıl Sonu Sınavı 1 % 40
Toplam % 100
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI % 60
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI % 40
Toplam % 100

İş Yükü ve AKTS Kredisi Hesaplaması

Aktiviteler Aktivite Sayısı Süre (Saat) İş Yükü
Ders Saati 14 3 42
Sınıf Dışı Ders Çalışması 35 3 105
Ara Sınavlar 1 2 2
Final 1 3 3
Toplam İş Yükü 152