COMPUTER ENGINEERING
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Ders Genel Tanıtım Bilgileri

Course Code: 1410311001
Ders İsmi: Computer Organization and Architecture
Ders Yarıyılı: Fall
Ders Kredileri:
Theoretical Practical Credit ECTS
3 0 3 6
Language of instruction: TR
Ders Koşulu:
Ders İş Deneyimini Gerektiriyor mu?: No
Type of course: Necessary
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Dr.Öğr.Üyesi Recep DURANAY
Course Lecturer(s): Dr.Öğr.Üyesi Recep DURANAY
Assoc. Prof. Fatih KOÇAN
Course Assistants:

Dersin Amaç ve İçeriği

Course Objectives: The aim of this course is to provide the students with the knowledge of general design principles of computer hardware and the ability to implement these designs using modern development tools.
Course Content: Buses, registers, command execution loop, control unit design methods, computer arithmetic, RAM, ROM, associative memory, cache, virtual memory, input / output, pipeline, RISC architecture, multiprocessor systems, term project.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
3 - Competences
Communication and Social Competence
Learning Competence
1) Adequate knowledge in computer organization (control unit design methods, computer arithmetic, RAM, ROM, associative memory, cache, virtual memory, input / output).
2) The ability to design basic computer hardware under realistic constraints and conditions by using theoretical and applied knowledge in these areas.
3) Ability to find, select and use modern tools and techniques required to design and implement computer hardware.
Field Specific Competence
Competence to Work Independently and Take Responsibility

Ders Akış Planı

Week Subject Related Preparation
1) Performance concepts unit 2
2) Buses, registers, command execution loop TEXTBOOK
3) memory hierarchy unit 4
4) Cache unit 5
5) Internal memories unit 6
6) External Memory unit 7
7) Input/Output unit 8
8) Midterm Textbook
9) Number systems unit 10
10) computer arithmetic unit 11
11) command sets unit 12
12) Addressing modes and formats unit 13
13) Assembli language unit 15
14) Structure of the processor unit 16
15) RISC unit 17
16) Final Textbook

Sources

Course Notes / Textbooks: computer organization and architecture, william stallings 11. basım
References: computer organization and architecture, william stallings 11. basım

Ders - Program Öğrenme Kazanım İlişkisi

Ders Öğrenme Kazanımları

1

2

3

Program Outcomes
1) PO 1.1) Sufficient knowledge in mathematics, science and computer engineering
2) PO 1.2) Ability to apply theoretical and applied knowledge in mathematics, science and computer engineering for modeling and solving engineering problems.
3) PO 2.1) Identifying complex engineering problems
4) PO 2.2) Defining complex engineering problems
5) PO 2.3) Formulating complex engineering problems
6) PO 2.4) Ability to solve complex engineering problems
7) PO 2.5) Ability to choose and apply appropriate analysis and modeling methods
8) PO 3.1) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions.
9) PO 3.2) Ability to apply modern design methods under realistic constraints and conditions for a complex system, process, device or product
10) PO 4.1) Developing modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications
11) PO 4.2) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications
12) PO 4.3) Ability to use information technologies effectively.
13) PO 5.1) Examination of complex engineering problems or discipline-specific research topics, designing experiments
14) PO 5.2) Examination of complex engineering problems or discipline-specific research topics, experimentation
15) PO 5.3 ) Analysis of complex engineering problems or discipline-specific research topics, data collection
16) PO 5.4) Analyzing the results of complex engineering problems or discipline-specific research topics
17) PO 5.5) Examining and interpreting complex engineering problems or discipline-specific research topics

Ders - Öğrenme Kazanımı İlişkisi

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) PO 1.1) Sufficient knowledge in mathematics, science and computer engineering
2) PO 1.2) Ability to apply theoretical and applied knowledge in mathematics, science and computer engineering for modeling and solving engineering problems.
3) PO 2.1) Identifying complex engineering problems
4) PO 2.2) Defining complex engineering problems
5) PO 2.3) Formulating complex engineering problems
6) PO 2.4) Ability to solve complex engineering problems
7) PO 2.5) Ability to choose and apply appropriate analysis and modeling methods
8) PO 3.1) Ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions. 4
9) PO 3.2) Ability to apply modern design methods under realistic constraints and conditions for a complex system, process, device or product
10) PO 4.1) Developing modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications
11) PO 4.2) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications
12) PO 4.3) Ability to use information technologies effectively.
13) PO 5.1) Examination of complex engineering problems or discipline-specific research topics, designing experiments
14) PO 5.2) Examination of complex engineering problems or discipline-specific research topics, experimentation
15) PO 5.3 ) Analysis of complex engineering problems or discipline-specific research topics, data collection
16) PO 5.4) Analyzing the results of complex engineering problems or discipline-specific research topics
17) PO 5.5) Examining and interpreting complex engineering problems or discipline-specific research topics

Öğrenme Etkinliği ve Öğretme Yöntemleri

Course
Homework

Ölçme ve Değerlendirme Yöntemleri ve Kriterleri

Yazılı Sınav (Açık uçlu sorular, çoktan seçmeli, doğru yanlış, eşleştirme, boşluk doldurma, sıralama)
Homework

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 40
Semester Final Exam 1 % 60
total % 100
PERCENTAGE OF SEMESTER WORK % 40
PERCENTAGE OF FINAL WORK % 60
total % 100

İş Yükü ve AKTS Kredisi Hesaplaması

Activities Number of Activities Duration (Hours) Workload
Course Hours 14 3 42
Study Hours Out of Class 14 3 42
Midterms 1 2 2
Final 1 3 3
Total Workload 89