BİLGİSAYAR MÜHENDİSLİĞİ (YL) (TEZLİ) (İNGİLİZCE) | |||||
---|---|---|---|---|---|
Kazanılan Yeterlilik | Program Süresi | Toplam Kredi (AKTS) | Öğretim Şekli | Yeterliliğin Düzeyi ve Öğrenme Alanı | |
YÜKSEK LİSANS DERECESİ | 2 | 120 | ÖRGÜN |
TYÇ, TYYÇ, EQF-LLL, ISCED (2011):7. Düzey QF-EHEA:2. Düzey TYYÇ, ISCED (1997-2013): 48,52 |
Ders Kodu: | 3000004004 | ||||||||||
Ders İsmi: | Data Mining | ||||||||||
Ders Yarıyılı: | Bahar | ||||||||||
Ders Kredileri: |
|
||||||||||
Öğretim Dili: | EN | ||||||||||
Ders Koşulu: | |||||||||||
Ders İş Deneyimini Gerektiriyor mu?: | Hayır | ||||||||||
Ders İçin Önerilen Diğer Hususlar: | |||||||||||
Dersin Türü: | Department Elective | ||||||||||
Dersin Seviyesi: |
|
||||||||||
Dersin Veriliş Şekli: | Yüz yüze | ||||||||||
Dersin Koordinatörü: | Dr.Öğr.Üyesi Adem ÖZYAVAŞ | ||||||||||
Dersi Veren(ler): | |||||||||||
Dersin Yardımcıları: |
Dersin Amacı: | Veri madenciliği, büyük ölçekli veriler arasından bilgiye ulaşma, bilgiyi madenleme işidir. Diğer bir anlamda büyük veri yığınları içerisinden gelecekle ilgili tahminde bulunabilmemizi sağlayabilecek bağıntıların bilgisayar programı kullanarak aranmasıdır. Veri madenciliği deyimi ile eş değer başka kullanımlar da literatüre geçmiştir. Veritabanlarında bilgi madenciliği (knowledge mining from databases), bilgi çıkarımı (knowledge extraction), veri ve örüntü analizi (data/pattern analysis), veri arkeolojisi gibi. Bunların arasında en yaygın kullanım Veritabanlarında Bilgi Keşfi (VBK - Knowledge Discovery From Databases - KDD)'dir. Alternatif olarak veri madenciliği aslında bilgi keşfi sürecinin bir parçası şeklinde kabul görmektedir. |
Dersin İçeriği: | Veri Madenciliği Kavramları, Veri Hazırlama Teknikleri, İstatistiksel Öğrenme Teorisi(Naive Bayes) , Kümeleme Metodları (K-Means, hiyerarşik), Karar Ağaçları ve Karar Kuralları, Birliktelik Kuralları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Hafta | Konu | Ön Hazırlık |
1) | Veri Madenciliğine Giriş | |
2) | Veri Madenciliği Kavramları ve Veri Önişleme Teknikleri | |
3) | Veri İndirgeme ve Veri Ayrıklaştırma-I | |
4) | Veri İndirgeme ve Veri Ayrıklaştırma-II | |
5) | Eğiticili Öğrenme, Karar Ağaçları ve Kuralları | |
6) | Sınıflamada İstatistiksel Metodlar, Naïve Bayes Sınıflayıcı, Sınıflayıcıların Değerlendirilmesi, Sınıf Karışıklık Matrisi | |
7) | Eğiticisiz Öğrenme, K-Means Kümeleme, Hierarşik Kümeleme | |
8) | Ara Sınav 1 | |
9) | Kümeleme Metodları: K-Means Alg. ve Hiyerarşik Kümeleme | |
10) | Veri Ambarları ve OLAP Teknolojileri, Çok boyutlu veri modelinde OLAP işlemleri | |
11) | Web Madenciliği, Sayfa Sıralama(Page Ranking) Algoritmaları | |
12) | Ara Sınav-2 | |
13) | Yapay sinir ağlarını kullanarak sınıflama | |
13) | Ara Sınav-2 | |
14) | Proje Sunumları | |
14) | Yapay sinir ağlarını kullanarak sınıflama | |
15) | Proje Sunumları | |
16) | Final |
Ders Notları / Kitaplar: | 1.Kaynak Kitap: Data Mining – Concepts, Models, Methods and Algorithms, Mehmed Kantardzic, ISBN:0-471-22852-4 2.Kaynak Kitap: Data Mining , J. Han – M. Kamber, Morgan-Kaufman, Academic Press, 2001, ISBN: 1-55860-901-6 |
Diğer Kaynaklar: | 1.Kaynak Kitap: Data Mining – Concepts, Models, Methods and Algorithms, Mehmed Kantardzic, ISBN:0-471-22852-4 2.Kaynak Kitap: Data Mining , J. Han – M. Kamber, Morgan-Kaufman, Academic Press, 2001, ISBN: 1-55860-901-6 |
Ders Öğrenme Kazanımları | 1 |
2 |
3 |
||||||
---|---|---|---|---|---|---|---|---|---|
Program Kazanımları | |||||||||
1) Bilgisayar Bilimi ve Mühendisliği alanında bilimsel araştırma yaparak geniş ve derin bilgilere ulaşma, değerlendirme, yorumlama ve uygulama becerisi. | |||||||||
2) Sınırlı ya da eksik bilgiyi kapatmak ve uygulamak için bilimsel yöntemleri kullanma ve farklı disiplinlerin bilgilerini bütünleştirme kabiliyeti. | |||||||||
3) Bilgisayar Bilimi ve Mühendisliği problemlerini kurgulayabilme, problemleri çözmek için yöntemler geliştirebilme ve çözümde yenilikçi yöntemler kullanabilme. | |||||||||
4) Yeni ve/veya orijinal fikirler ve algoritmalar geliştirme becerisi; sistem, bileşen veya süreç tasarımında yenilikçi çözümler geliştirmek. | |||||||||
5) Bilgisayar Mühendisliğinde uygulanan güncel teknikler ve yöntemler ve bunların kısıtları hakkında geniş bilgi sahibi olma kabiliyeti. | |||||||||
6) Analitik modelleme ve deneysel araştırma tasarlama ve uygulama, süreçte karşılaşılan karmaşık durumları çözme ve yorumlama becerisi. | |||||||||
7) Bir yabancı dili (İngilizce) en az Avrupa Dil Portföyü seviyesinde sözlü ve yazılı iletişimde kullanabilme kabiliyeti. | |||||||||
8) Çok disiplinli ekiplerde liderlik etme, karmaşık durumlara çözüm geliştirme ve sorumluluk alma kabiliyeti. | |||||||||
9) Toplumsal, yasal, etik ve ahlaki değerlerin bilincinde olmak ve bu değerler çerçevesinde araştırma ve uygulama çalışmaları yapabilmek. | |||||||||
10) Bilgisayar Bilimi ve Mühendisliği alanında yeni ve gelişmekte olan uygulamalar hakkında farkındalık ve bunları inceleme ve gerekirse öğrenme kabiliyeti. |
Etkisi Yok | 1 En Düşük | 2 Düşük | 3 Orta | 4 Yüksek | 5 En Yüksek |
Dersin Program Kazanımlarına Etkisi | Katkı Payı | |
1) | Bilgisayar Bilimi ve Mühendisliği alanında bilimsel araştırma yaparak geniş ve derin bilgilere ulaşma, değerlendirme, yorumlama ve uygulama becerisi. | |
2) | Sınırlı ya da eksik bilgiyi kapatmak ve uygulamak için bilimsel yöntemleri kullanma ve farklı disiplinlerin bilgilerini bütünleştirme kabiliyeti. | |
3) | Bilgisayar Bilimi ve Mühendisliği problemlerini kurgulayabilme, problemleri çözmek için yöntemler geliştirebilme ve çözümde yenilikçi yöntemler kullanabilme. | |
4) | Yeni ve/veya orijinal fikirler ve algoritmalar geliştirme becerisi; sistem, bileşen veya süreç tasarımında yenilikçi çözümler geliştirmek. | |
5) | Bilgisayar Mühendisliğinde uygulanan güncel teknikler ve yöntemler ve bunların kısıtları hakkında geniş bilgi sahibi olma kabiliyeti. | |
6) | Analitik modelleme ve deneysel araştırma tasarlama ve uygulama, süreçte karşılaşılan karmaşık durumları çözme ve yorumlama becerisi. | |
7) | Bir yabancı dili (İngilizce) en az Avrupa Dil Portföyü seviyesinde sözlü ve yazılı iletişimde kullanabilme kabiliyeti. | |
8) | Çok disiplinli ekiplerde liderlik etme, karmaşık durumlara çözüm geliştirme ve sorumluluk alma kabiliyeti. | |
9) | Toplumsal, yasal, etik ve ahlaki değerlerin bilincinde olmak ve bu değerler çerçevesinde araştırma ve uygulama çalışmaları yapabilmek. | |
10) | Bilgisayar Bilimi ve Mühendisliği alanında yeni ve gelişmekte olan uygulamalar hakkında farkındalık ve bunları inceleme ve gerekirse öğrenme kabiliyeti. |
Ders | |
Grup çalışması ve ödevi | |
Okuma | |
Ödev |
Yarıyıl İçi Çalışmaları | Aktivite Sayısı | Katkı Payı |
Ödev | 2 | % 30 |
Ara Sınavlar | 1 | % 30 |
Yarıyıl/Yıl Sonu Sınavı | 1 | % 40 |
Toplam | % 100 | |
YARIYIL İÇİ ÇALIŞMALARININ BAŞARI NOTU KATKISI | % 60 | |
YARIYIL SONU ÇALIŞMALARININ BAŞARI NOTUNA KATKISI | % 40 | |
Toplam | % 100 |
Aktiviteler | Aktivite Sayısı | Süre (Saat) | İş Yükü |
Ders Saati | 15 | 3 | 45 |
Sınıf Dışı Ders Çalışması | 15 | 5 | 75 |
Ödevler | 2 | 30 | 60 |
Ara Sınavlar | 1 | 2 | 2 |
Final | 1 | 3 | 3 |
Toplam İş Yükü | 185 |